CO2 HYDROGENATION OVER CERIA-BASED TRANSITION METAL NANOCATALYSTS

S. Stefa¹, G. Varvoutis^{2,3}, M. Lykaki⁴, V. Binas^{1,5}, G.E. Marnellos^{6,7}, M. Konsolakis^{4,*}

¹Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece

²Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece

³Cluster of Bioeconomy and Environment of Western Macedonia, Kozani, Greece ⁴School of Production Engineering & Management, Technical University of Crete, Chania, Greece

⁵Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece ⁶Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

⁷Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas,

Thermi, Greece

(*<u>mkonsolakis@tuc.qr</u>)

ABSTRACT

The hydrogenation of CO₂ to value-added products by means of green H₂ has gained increasing attention for mitigating CO₂ emissions and utilizing the excess power of renewable energy sources. Ceria-based transition metal catalysts have received significant attention due to their intrinsic properties in conjunction with their lower cost as compared to noble metal-based catalysts. In the present work, CO₂ hydrogenation is explored over a series of M/CeO₂-NR catalysts, employing first row 3d transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as the active metal phases and rod-shaped ceria as support. The as-prepared materials were thoroughly characterized by various complementary characterization techniques, involving N₂ adsorption at -196 °C, XRD, SEM/EDS, TEM, TPR, and were catalytically evaluated under stoichiometric reaction conditions ($H_2/CO_2 = 4$). It is worth mentioning that a volcano-type dependence of CO₂ hydrogenation activity and selectivity was disclosed as a function of metal entity (Ti – Zn) revealing a maximum for the Ni-based sample. According to the catalytic results, the CO₂ conversion performance of M/CeO₂-NR catalysts is strongly dependent on the metal entity, following the trend: Ni > Co > Cu > Fe > Zn > Cr \approx Ti \approx V \approx Mn. In particular, Ni/CeO₂-NR exhibits by far the best performance, offering ~90% conversion at 300 °C. Moreover, all the M/CeO₂-NR systems, except those of Ni and Co, are mainly selective to CO. Both the CO₂ hydrogenation activity and selectivity can be closely related to the intrinsic features of each metal in relation to its ability to activate CO_2 and dissociate H_2 . The catalytic evaluation of the as-prepared samples in rWGS and CO₂ methanation constitutes the stepping stone for their further assessment towards the production of olefins.

KEYWORDS: CO₂ hydrogenation, transition metals, ceria nanorods

INTRODUCTION

Carbon dioxide (CO₂), mainly originated from fossil fuel energy sources, is a major contributor to the accumulation of greenhouse gases. In order to mitigate greenhouse gas emissions, it is of great significance to optimize the utilization of fossil fuels and implement effective Carbon Capture and Utilization (CCU) technologies ^[1,2]. A sustainable CCU strategy is CO₂ hydrogenation, in which captured CO₂ is reduced through its reaction with hydrogen. Under atmospheric pressure conditions, this can be achieved by either the reverse water-gas shift (rWGS) reaction (Eq. 1), which produces CO or the methanation reaction (Eq. 2), which yields CH₄ ^[3].

 $CO_2 + H_2 \leftrightarrow CO, \Delta H = +41.3 \text{ KJ/mol}$

(1)

$CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O, \Delta H = -164.7 \text{ KJ/mol}$

Among the investigated oxide materials, ceria (CeO₂) has gained significant attention as support due to its exceptional properties such as oxygen storage capacity, oxygen mobility, strong metal-support interactions, and rapid exchange between its two oxidation states (Ce³⁺/Ce⁴⁺) ^[4-6]. Besides the excellent catalytic activity of ceria-based noble metals (Ru, Rh, Pd), their high cost and limited availability render them undesirable from a techno-economic point of view. In view of this context, recent research efforts have focused on the rational design of cost-efficient and highly-active nonnoble metal catalysts, emphasizing on the 3d transition metals (TMs), which can adequately adsorb and activate CO₂ molecules ^[6–8]. To this direction, we recently showed that Ni catalysts supported on rod-shaped ceria nanoparticles exhibit excellent hydrogenation performance, attributed mainly to the enhanced redox properties of ceria nanorods in conjunction to the synergistic nickel-ceria interactions ^[6,9,10]. Moreover, Cu/CeO₂ sample of rod-like morphology demonstrates excellent rWGS performance, revealing the key role of metal entity in CO₂ adsorption/activation and in turn in activity and selectivity towards CO or CH₄ ^[11,12]. In the present study, a series of M/CeO₂ catalysts with a constant atomic ratio of M/Ce = 0.25 were prepared, using the first row 3d transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as active phases for ceria nanorods (CeO₂-NR). The catalytic materials were thoroughly characterized by various techniques (N₂ adsorption at -196 °C, XRD, SEM/EDS, TEM, H₂-TPR). The catalytic evaluation of the as-prepared samples in rWGS and CO₂ methanation will act as the onset for their further assessment towards olefins production.

METHODOLOGY

Bare ceria nanorods (CeO₂-NR) were synthesized through the hydrothermal method, as thoroughly described in our previous work ^[13]. Ceria-based transition metals (M/CeO₂, TM: Ti, V, Cr, Mn, Fe, Co, Ni, Cu) were synthesized by the wet impregnation method, using aqueous solutions of metal nitrate precursors, so as to obtain a M/Ce atomic ratio of 0.25. The obtained suspensions were heated under stirring until water evaporation, dried at 90 °C for 12 h, and finally calcined at 500 °C for 2 h (heating ramp 5 °C/min) ^[10].

The catalytic materials were thoroughly characterized in terms of their textural (N₂ adsorption at – 196 °C), structural (XRD), morphological (SEM/EDS, TEM) and redox (H₂-TPR) properties.

Catalytic studies were carried out in a quartz fixed-bed U-shaped reactor (i.d. = 1 cm), loaded with 200 mg of catalyst diluted with 200 mg of inert SiO₂. The samples were reduced in situ at 400 °C for 1 h under pure H₂ flow (40 cm³ min⁻¹), followed by flushing with He (10 cm³ min⁻¹) until room temperature. The experiments were conducted at 1 bar and in the temperature range of 200 – 500 °C at intervals of 15–20 °C and a heating rate of 1 °C/min. The total volumetric feed flow was 100 cm³ min⁻¹, corresponding to a weight hourly space velocity (WHSV) of 30 L·g⁻¹·h⁻¹. The gas feed constituted of a H₂/CO₂ mixture at a molar ratio of 4.

RESULTS AND DISCUSSION

The main textural and structural characteristics of bare CeO_2 -NR and M/CeO_2 samples (atomic ratio M/Ce = 0.25) are summarized in Table 1. Bare ceria demonstrates a BET surface area of 79 m²/g while the addition of the transition metals into CeO_2 slightly decreases the BET surface area.

Sample	Nominal metal loading (wt%)	EDS analysis		BET analysis	XRD analysis		TEM analysis
		Atomic ratio M/Ce	Metal content (wt%)	SBET (m²/g)	Average crystallite size (nm)		M _x O _y particle size
					CeO ₂	M _x O _y	(nm)
CeO ₂ -NR	-	-	-	79	15	-	-
Ti/CeO ₂	6.5	0.24	6.3	_	11	20	16
V/CeO ₂	6.9	0.28	7.6	-	14	45	28
Cr/CeO ₂	7.0	0.26	7.2	-	11	-	10
Mn/CeO ₂	7.4	0.22	6.5	-	11	-	15
Fe/CeO ₂	7.5	0.21	6.3	69	10	7	11
Co/CeO ₂	7.9	0.26	8.1	72	14	16	15
Ni/CeO2	7.9	0.25	7.8	72	14	23	10
Cu/CeO ₂	8.5	0.25	8.6	75	12	43	16
Zn/CeO ₂	8.7	0.24	8.3	76	12	44	41

Table 1. Textural and structural characteristics of CeO_2 and M/CeO_2 samples.

The XRD patterns of bare CeO₂-NR and M/CeO₂ samples are presented in Figure 1. The main diffraction peaks of ceria nanorods correspond to the face-centered cubic (fcc) fluorite structure of ceria (Fm3m symmetry, no. 225) ^[14]. Furthermore, the diffractions peaks of M/CeO₂ samples (M: Ti, Fe, Co, Ni, Cu, Zn) show the existence of TiO₂, Fe₂O₃, Co₃O₄, NiO, CuO, ZnO, respectively, apart from ceria. The Mn/CeO₂ and Cr/CeO₂ samples do not exhibit any diffraction peaks, except from ceria. In the V/CeO₂ sample, the diffraction peaks detected are attributed to the CeO₂ and CeVO₄ crystal phases.

Figure 1. XRD patterns of CeO₂-NR and M/CeO₂ samples.

The morphological characteristics of the samples were analyzed by TEM, as shown in Figure 2. It is obvious that ceria support retains its nanorod morphology upon addition of the metal entity.

Figure 2. TEM images of the samples: (a) CeO₂-NR, (b) Ti/CeO₂, (c) V/CeO₂, (d) Cr/CeO₂, (e) Mn/CeO₂, (f) Fe/CeO₂, (g) Co/CeO₂, (h) Ni/CeO₂, (i) Cu/CeO₂, and (j) Zn/CeO₂.

For the optimum catalytic systems (Ni/CeO₂ and Co/CeO₂ for CO₂ methanation, Fe/CeO₂ and Cu/CeO₂ for the rWGS reaction), TPR measurements were performed in the temperature range of 100–1000 °C, using H₂ as reducing agent, in order to gain insight into the impact of metal entity on the reducibility. As depicted in Figure 3, bare CeO₂-NR exhibits two broad reduction peaks, attributed to the surface (O_s) and bulk (O_b) oxygen reduction of ceria, respectively ^[15]. The addition of the metal phase facilitates ceria surface oxygen reduction with all M/CeO₂ samples exhibiting a high-temperature peak in the range of 747–793 °C which is attributed to the ceria sub-surface oxygen reduction.

Figure 3. H₂-TPR profiles of CeO₂-NR and representative M/CeO₂ samples.

In Figure 4, CO₂ conversion and CO selectivity in the temperature range of 200–500 °C are depicted for all M/CeO₂ samples. Apparently, the conversion of CO₂ depends strongly on the metal entity, following the general trend: Ni > Co > Cu > Fe > Zn > Cr \approx Ti \approx V \approx Mn, with the Ni/CeO₂ catalyst exhibiting the optimum performance (~90% conversion at 300 °C). Also, the early 3d transition metals (Ti, V, Cr, Mn) are almost inactive (X_{CO2} < 10% at T < 400 °C), demonstrating even lower

conversion performance than bare ceria nanorods. All M/CeO_2 systems, apart from Ni and Co, are mainly selective to CO. In particular, the Ni/CeO₂ catalyst is completely selective to CH₄ in the whole temperature range, whereas the Co/CeO₂ sample exhibits intermediate selectivity values depending on temperature.

Figure 4. CO_2 conversion (a) and CO selectivity (b) for the first row 3d transition metals supported on CeO_2 nanorods. Reaction conditions: WHSV = $30 L \cdot q^{-1} \cdot h^{-1}$, $H_2:CO_2 = 4$, P = 1 bar.

In order to gain insight into the role of metal entity in CO₂ hydrogenation performance, the normalized reaction rate of CO₂ consumption (r_{CO2}) and the selectivity to methane (S_{CH4}) were plotted at a specific reaction temperature (350 °C), as shown in Figure 5. Notably, a volcano-shaped dependence of CO₂ conversion and CH₄ selectivity was disclosed for the first row 3d transition metals, (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) with a maximum obtained for Ni. Particularly, Ni/CeO₂ exhibits the optimum hydrogenation performance in terms of CO₂ consumption rate (~800 µmol $g_{Ni}^{-1}s^{-1}$) and CH₄ selectivity (100%), followed by Co (r_{CO2} = 445.44 µmol $g_{Co}^{-1}s^{-1}$, S_{CH4} = 90%). The 3d early transition metals (Ti – Fe), as well as the 3d late metals (Cu and Zn), exhibit much lower reactivity (r_{CO2} < 200 µmol $g_{M}^{-1}s^{-1}$), while being selective to CO (Figure 4).

Figure 5. Metal entity-dependence of CO₂ conversion and CH₄ selectivity at 350 °C for the first row 3d transition metals supported on ceria nanorods.

In this point, it ought to be mentioned that the present experimental findings (Figure 5) agree perfectly with the theoretically predicted trend for CO_2 hydrogenation following the formate

pathway, as revealed by Sun et al. ^[16], thus indicating the prevalence of formate route and the significance of energy barrier for CO_2 activation and H_2 dissociation.

CONCLUSIONS

In the present work, a series of M/CeO₂ catalysts (atomic ratio M/Ce = 0.25) were catalytically evaluated in CO₂ hydrogenation, employing the first row 3d transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as active phases. The Ni/CeO₂ sample demonstrated its superiority in terms of CO₂ conversion rate (~800 µmol $g_{Ni}^{-1}s^{-1}$) and CH₄ selectivity (100%), followed by Co (r_{CO2} = 445.44 µmol $g_{Co}^{-1}s^{-1}$, S_{CH4} = 90%). The 3d early transition metals (Ti – Fe) and the 3d late metals (Cu and Zn) exhibit much lower activity (r_{CO2} < 200 µmol $g_{M}^{-1}s^{-1}$), while being selective to CO. Notably, the key role of metal entity in CO₂ hydrogenation was clearly established, as illustrated by the volcano-shaped dependence of both activity and selectivity to methane as a function of 3d-orbital electron number, with Ni located at the peak of this volcano curve. The present experimental findings concerning the CO₂ hydrogenation performance over ceria-based transition metal catalysts constitute an adequate overview for their further assessment towards olefins production.

ACKNOWLEDGEMENTS

This research has received funding from the European Union under grant agreement No 101099717 – ECOLEFINS project. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Innovation Council and SMEs Executive Agency (EISMEA) granting authority. Neither the European Union nor the granting authority can be held responsible for them.

REFERENCES

- [1] Atsbha TA, Yoon T, Seongho P, Lee CJ. (2021). J. CO₂ Util., 44, 101413.
- [2] Wang H, Liu Y, Laaksonen A, Krook-Riekkola A, Yang Z, Lu X, Ji X. (2020). *Renew. Sustain. Energy Rev.*, 131, 110010.
- [3] Romeo LM, Bailera M. (2020). J. CO₂ Util., 39, 101174.
- [4] Ebrahimi P, Kumar A, Khraisheh M. (2022). Catalysts, 12, 1101.
- [5] Hussain I, Tanimu G, Ahmed S, Aniz CU, Alasiri H, Alhooshani K. (2023). Int. J. Hydrogen Energy, 48, 24663–24696.
- [6] Konsolakis M, Lykaki M. (2021). Catalysts, 11, 452.
- [7] Konsolakis M, Lykaki M. (2020). Catalysts, 10, 160.
- [8] Li Y, Zhang X, Zheng Z. (2022). CCS Chem., 4, 31–53.
- [9] Varvoutis G, Lykaki M, Stefa S, Binas V, Marnellos GE, Konsolakis, M. (2021). *Appl. Catal. B: Environ.*, 297, 120401.
- [10]Varvoutis G, Lykaki M, Stefa S, Papista E, Carabineiro SAC, Marnellos GE, Konsolakis M. (2020). *Catal. Commun.*, 142, 106036.
- [11]Konsolakis M, Lykaki M, Stefa S, Carabineiro SAC, Varvoutis G, Papista E, Marnellos GE. (2019). *Nanomaterials,* 9, 1739.
- [12] Varvoutis G, Lykaki M, Marnellos GE, Konsolakis M. (2023). Catalysts, 13, 275.
- [13]Lykaki M, Pachatouridou E, Carabineiro SAC, Iliopoulou E, Andriopoulou C, Kallithrakas-Kontos N, Boghosian S, Konsolakis M. (2018). *Appl. Catal. B: Environ.*, 230, 18–28.
- [14]Sebastian R, Swapna MS, Sankararaman S. (2020). SN Appl. Sci., 2, 1145.
- [15]Rao GR. (1999). Bull. Mater. Sci., 22, 89–94.
- [16]Sun J, Zhao H, Fang X, Zhai S, Zhai D, Sun L, Deng W. (2021). *Mol. Catal.*, 508, 111581.